The Queen's University of Belfast
Parallel Computer Centre

[Next] [Previous] [Top]

4 Siftware - past and present developments

This section outlines the historic background or the evolution of database systems in terms of parallel processing and data mining with reference to the part played by some of the main vendors and their successes.

4.1 New architectures

The best of the best commercial database packages are now available for massively parallel processors including IBM DB2, INFORMIX-OnLine XPS, ORACLE7 RDBMS and SYBASE System 10. This evolution, however, has not been an easy road for the pioneers.

HPCwire by Michael Erbschloe, contributing editor Oct. 6, 1995

The evolution described by Michael Erbschloe is detailed and expanded on in the following sections.

4.1.1 Obstacles

What were the problems at the start?

The solution was for database software producers to create easy-to-use tools and form strategic relationships with hardware manufacturers and consulting firms.

4.1.2 The key

The key is the retooling database software to maspar environments. Parallel processors can easily assign small, independent transactions to different processors. With more processors, more transactions can be executed without reducing throughput. This same concept applies to executing multiple independent SQL statements. A set of SQL statements can be broken up and allocated to different processors to increase speed.

Multiple data streams allow several operations to proceed simultaneously. A customer table, for example, can be spread across multiple disks, and independent threads can search each subset of the customer data. As data is partitioned into multiple subsets performance is increased. I/O subsystems then just feed data from the disks to the appropriate threads or streams.

An essential part of designing a database for parallel processing is the partitioning scheme. Because large databases are indexed, independent indexes must also be partitioned to maximize performance. There are five partitioning methods used to accomplish this:

1. Hashing, where data is assigned to disks based on a hash key

2. Round-robin partitioning, which assigns a row to partitions in sequence.

3. Allocating rows to nodes based on ranges of values.

4. Schema partitioning (Sybase Navigation Server), which lets you tie tables to specific partitions.

5. User-defined roles (Informix).

4.1.3 Oracle was first

Oracle was the first to market parallel database packages with their flagship product, ORACLE7 RDBMS having been installed at over 100 user sites. Oracle began beta support for the IBM SP platform in July 1994.

Ease of use is an important factor in the success of any commercial application and by design the Oracle Parallel Server hides the complexities of data layout from the users. Users who wish to add disks or processor nodes can do so without complex data reorganization and application re-partitioning. In addition, Oracle Parallel Server software uses the same SQL interface as the Oracle7 database. Since no new commands or extensions to existing commands are needed, previously developed tools and applications will run unchanged.

The Oracle Parallel Server technology performs both the parallelization and optimization automatically, eliminating the need to re-educate application developers and end users. It is also easy for user organizations to deploy because it eliminates many traditional implementation burdens.

Reference -

4.1.4 Red Brick has a strong showing

Red Brick Systems, based in Los Gatos, Calif., specializes in software products used for fast and accurate business decisions where large client/server databases, usually tens to hundreds of gigabytes in size with hundreds of millions of records, are the norm. These applications require historical context, but timely analysis of complex data relationships for both consolidated and detailed business information.

Red Brick Warehouse VPT, (Very large data warehouse support, Parallel query processing, Time based data management), is a DBMS tuned for data warehouse applications. It employs specialized indexing techniques which are designed to facilitate data warehousing. The join accelerator STARjoin uses a special index to multiple tables that participate in a join. With its parallel capability it can run applications that can handle up to 500 GB or more of data It is a parallel database product that significantly improves the organization, availability, administration, and performance of data warehouse applications.

Unlike RDBMS products optimized for on-line transaction processing, Red Brick Warehouse VPT allows business management applications to be developed and deployed quickly;

Red Brick's server-based relational engine is accessible by several popular front-end client application environments which support Microsoft ODBC, Sybase Open Client, and Information Builders, Inc. EDA/SQL interfaces.

Reference -

4.1.5 IBM is still the largest

IBM is the world's largest producer of database management software. Eighty percent of the FORTUNE 500, including the top 100 companies, rely on DB2 database solutions to manage data on mainframes, minicomputers, RISC workstations and personal computers. The availability of the new DB2 Parallel Edition, extends the functionality and reliability of the DB2 to IBM's high-performance parallel systems SP2. With DB2 Parallel Edition running on the SP2, users can access very large databases, process huge amount of data, and perform complex queries in minutes.

DB2 Parallel Edition is packaged with the SP2 running AIX and a set of services to help users speed their transactions and quickly and easily derive the benefits of parallel computing. The turnkey solution, called POWERquery, provides a relatively cost-effective, large-scale decision support.

DB2 Parallel Edition is a member of the IBM DB2 family of databases, therefore users do not have to rewrite any applications or retrain their staffs. To a user, the database appears to be a single database server, only faster. It is faster because all functions are performed in parallel, including data and index scans, index creation, backup and restore, joins, inserts, updates and deletes.

Reference -

4.1.6 INFORMIX is online with 8.0

Informix has been supporting SMP with Informix Parallel Data Query (PDQ) as part of its Dynamic Scalable Architecture (DSA) and through DSA/XMP by extending PDQ functions to work in loosely coupled parallel environments, including clusters. Online 8.0 is the latest high-performance, scalable database server based on Informix's industry-leading DSA. OnLine XPS extends DSA to loosely coupled, shared-nothing computing architectures including clusters of symmetric multiprocessing (SMP) systems and (MPP) systems.

One key to Informix's success on SMP is a joint development agreement with Sequent Computer Systems (Beaverton, Ore. that resulted in a rebuild of the core of Informix OnLine to a multithreaded system with small-grained, lightweight threads. Virtual processors are pooled and the DBMS allocates them dynamically to CPUs, based on processing requirements. OnLine XPS' high availability, systems management based on the Tivoli Management Environment (TME), data partitioning, enhanced parallel SQL operations, and other features are designed to simplify and economize VLDB applications. OnLine XPS also offers a significant improvement in performance for mission-critical, data-intensive tasks associated with data warehousing, decision support, imaging, document management and workflow, and other VLDB operational environments.

Although Informix databases, such as OnLine XPS and INFORMIX-OnLine Dynamic Server, are at the heart of data warehousing solutions, other products and services must integrate with the databases to ensure a successful data warehouse implementation, a critical component of a data warehouse architecture is online analytical processing (OLAP).

Informix delivers relational multidimensional capabilities through strategic partnerships with Information Advantage, MicroStrategy, and Stanford Technology Group. Informix also has proven partnerships with technology providers, such as Business Objects, Coopers & Lybrand, Evolutionary Technologies, KPMG, Price Waterhouse, Prism, and SHL Systemhouse, to provide capabilities such as data modelling, data extraction, data access, multidimensional analysis, and systems integration.

Reference -

4.1.7 Sybase and System 10

Sybase has improved multithreading with System 10 which has been designed to handle interquery and transaction parallelizing on SMP computers with very large, heavyweight threads. Up to 64 processors can be utilized as SQL servers configured into a single system image. This was accomplished in part by the use of the Sybase Navigation server which takes advantage of parallel computers. Parallelism is achieved by an SQL Server on a processor and control servers, which manages parallel operations. Sybase's Navigation Server partitions data by hashing, ranges, or schema partitioning. Reports indicate that the partitioning scheme and keys chosen impact parallel performance.

Sybase IQ was delivered to 24 beta customers in July, providing predictable interactive access to large amounts of data directly in the warehouse. While offering up to 100-fold query performance improvement over standard relational databases, Sybase IQ slashes warehouse query costs by orders of magnitude, requiring up to 80 percent less disk, up to 98 percent less I/O, and utilizing existing hardware, according to Sybase.

An optional extension for the SYBASE SQL Server, SYBASE IQ includes patent-pending Bit-Wise indexing that allows significantly more data to be processed in each instruction, resulting in up to thousands of times faster performance without adding hardware. Beyond simple bit maps, Bit-Wise indexing makes it possible to index every field in the database --including character and numeric fields not supported by other bit-map indexing schemes -- in less than the size of the raw data, substantially reducing disk costs. SYBASE IQ indexes provide a complete map of the data, eliminating table scans and directly accessing just the information required, reducing I/O by up to 98 percent and resulting in fast, predictable answers to any query.

Reference -

4.1.8 Information Harvester

Information Harvester software on the Convex Exemplar offers market researchers in retail, insurance, financial and telecommunications firms the ability to analyse large data sets in a short time.

The flexibility of the Information Harvesting induction algorithm enables it to adapt to any system. The data can be in the form of numbers, dates, codes, categories, text or any combination thereof. Information Harvester is designed to handle faulty, missing and noisy data. Large variations in the values of an individual field do not hamper the analysis. Information Harvester claims unique abilities to recognize and ignore irrelevant data fields when searching for patterns. In full-scale parallel-processing versions, Information Harvester can handle millions of rows and thousands of variables.

The Exemplar series, based on HP's high performance PA-RISC processors, is the first supercomputer-class family of systems to track the price/performance development cycle of the desktop. They are being used for a range of applications including automotive, tire and aircraft design, petroleum research and exploration, seismic processing, and university, scientific and biomedical research.

Reference -

4.2 Vendors and Applications

This section examines some of the major vendors of siftware with supporting case studies.

4.2.1 Information Harvesting Inc

The problem of deriving meaningful information from enormous amounts of complex data is being handled by the data mining software produced by Information Harvesting Inc. (IH), founded in 1994 and based in Cambridge, Mass. It makes use of conventional statistical analysis techniques by building upon a proprietary tree-based learning algorithm similar to CART, ID3 and Chaid that generates expert-system-like rules from datasets, initially presented in forms such as numbers, dates, categories, codes, or any combination.

The proprietary Information Harvesting algorithm operates by creating a set of bins for each field in the data, with groups of values within a field ultimately determining the rules. According to the distribution of values the algorithm delineates bin boundaries via fuzzy logic to determine where a given value falls within a bin and thus how the values may be grouped.

A binary tree then generates rules from the data. At the uppermost node the algorithm analyses all data rows, and at each lower level subsets created by the node above are analysed. Each node arrives at a set of rules categorizing the data reviewed at that level. Each rule may include multiple variables (combined with ANDs) or multiple clauses (combined with ORs) and derives from the way variables fall into various bins. A prediction can be based on one or more rules.

Rule quality, the amount of error for each rule, and importance, how often each rule is used for making predictions, are also assessed by the software. This avoids the effect of simply memorizing historical data or misunderstanding the relevance of a given rule. Design rows are used to extract the rules per se, but test rows are utilized to determine the rules level of accuracy.

In addition, the program is set to optimize results by running over the same datasets again and again while adjusting the internal parameters for the best result. Optimization can be achieved with either a rapid hill-climbing algorithm or completely with a modified genetic algorithm.

The data mining modules are written in ANSI C and thus can be ported to a wide range of platforms: on client/server architecture (where the application uses TCP/IP), parallel processing machines, or mainframe supercomputers.

Two examples of companies using the software are:

Healthcare - Michael Reese Medical Associates (MRMA) employed data mining software from Information Harvesting and Vantage Point as a tool for gaining advantage in contract negotiations. The 28-doctor group had to predict trends in type, price, location, and use of service, since they must negotiate with insurance companies to provide certain services at a set monthly fee, doctors must accurately predict their per member/per month cost to break even or make a profit. Normally physicians could only make an intuitive estimate roughly based on after-the-fact evaluations of prior estimates when determining this critical figure whereas data mining offered a new approach.

Finance - The Philadelphia Police and Fire Federal Credit Union (PFFCU) used data mining to maximize their membership base by cultivating multiple relationships (e.g. consumer loans, annuities, credit cards, etc.) with members. Because the membership base is extremely homogeneous (police and fire dept. employees and their families), data had to be deeply drilled to identify segmented groups. Used in conjunction with software such as InterGlobal Financial Systems' Credit Analyzer, Information Harvester identified members most and least profitable to the organization as well as those who would make attractive loan candidates. Data mining often led PFFCU to accurate but counter-intuitive results. For example, members who had filed for bankruptcy were more inclined to clear debts with the Credit Union than outside lenders. Thus, PFFCU identified members with imperfect credit histories but a strong tendency to pay, whereas these individuals would be ignored by large conventional lenders.

4.2.2 Red Brick

Red Brick have a number of cases to present in support of the use of their data mining technology, two of which are H.E.B. of San Antonio, and Hewlett-Packard.

H.E.B.- Category management in retailing

H.E.B. of San Antonio, Texas (sales of approx. $4.5 billion, 225 stores, 50,000 employees) was able to bring a category management application from design to roll out in under nine months because it kept the requirements simple and had database support from Red Brick and server support from Hewlett-Packard Company.

Previously, the marketing information department would take ad hoc requests for information from users, write a program to extract the information, and return the information to the user a week or so later - not timely enough for most business decisions and in some cases not what the user really wanted in the first place.

The organizational change to category management was implemented in 1990. The category manager is characterized as the "CEO" of the category with profit and loss responsibilities, final decision over which products to buy and which to delete, and where the products are to be located on the shelves. The category manager also decides which stores get which products. Although H.E.B. stores are only within the state of Texas, it is a diverse market where some stores near Mexico are 98% Hispanic while suburban Dallas stores may be only 2% Hispanic. The change to category management centralized all merchandising and marketing decisions, removing these decisions from the stores.

As category managers built up their negotiating skills, technical skills, and partnering skills over three years, the need for more timely decision-support information grew. An enterprise-wide survey of users to determine requirements took until September 1993. The company then benchmarked three database management systems - Red Brick, Teradata and Time Machine - and picked Red Brick. The group leased the hardware, a Hewlett-Packard 9000 model T500 (2-processor, with 768M of RAM, and 100GB of disk space--the system now has 200 GB). For a user interface, the company contracted for a custom graphical front-end based on Windows. Also, a COBOL programmer was used to write data extraction programs to take P.O.S. data from the mainframe, format the data properly, and transfer the data to the Red Brick database.

The model was delivered in March 1994 and the application has been up and running without problems since then. The company maintains two years of data by week, by item (257,000 UPCs), by store. This is about 400 million detail records. Summary files are only maintained by time and total company, which can be an advantage.

The goal was to have all queries answered in 4 seconds, but some trends reports with large groups of items over long time periods take 30 - 40 seconds. The users are not always technically oriented, so the design intentionally aimed for simplicity. The system is ad hoc to the extent that the user can specify time, place, and product.

H.E.B. feels that category managers are now making fact-based decisions to determine which products to put in which stores, how much product to send to a store, and the proper product mix. Historically, buyers usually were promoted from the stores and had considerable product knowledge whereas now category managers are coming from other operational areas such as finance and human resources. This is possible because the system give people with limited product knowledge the equivalent of years experience.

Hewlett-Packard: "Discovering" Data To Manage Worldwide Support

Hewlett-Packard, a premier, global provider of hardware systems is known for manufacturing high quality products but to maintain its reputation they depended on delivering service and support through and after product delivery.

The Worldwide Customer Support Organization (WCSO) within Hewlett-Packard is responsible for providing support services to its hardware and software customers. For several years, WCSO has used a data warehouse of financial, account, product, and service contract information to support decision making. WCSO Information Management is responsible for developing and supporting this data warehouse.

Until 1994, WCSO Information Management supported business information queries with a data warehouse architecture based on two HP3000/Allbase systems and an IBM DB2 system. This was a first attempt at collecting, integrating, and storing data related to customer support for decision-making purposes. As they increasingly relied upon the data warehouse, they began to demand better performance, additional data coverage, and more timely data availability.

The warehouse architecture did not keep pace with the increased requirements from WCSO users. Users wanted to get information quickly. Both load and query performance were directly impacted as more data was added. It was to decided to investigate other warehouse alternatives with the aim of finding a new data warehouse that would significantly improve load/query performance, be more cost effective, and support large amounts of data without sacrificing performance. To help select the best combination of hardware and software for the new warehouse, benchmarks were conducted using Red Brick and two other RDBMS products. They did not look at Oracle or Sybase because they were promoting OLTP data functionality and weren't focused upon data warehousing.

Benchmarks included tests simulating some of HP's most demanding user queries, testing the load times for tables in the five to eight million row range. Tests also were conducted to verify that performance did not degrade as data was added into the warehouse. "The Red Brick product performed head and shoulders above the rest," recalls Ryan Uda, Program Manager for WCSO's Information Management Program. Benchmark results showed Red Brick loading data in one hour against ten hours for other systems. Red Brick's query performance was consistently five to ten times faster. Red Brick returned consistently superior performance results even when large amounts of data were added to the warehouse.

HP chose to use Red Brick software on an HP9000 and the project began with the consolidation of the existing three databases into a single data warehouse named "Discovery." This downsizing provided significant cost savings and increased resource efficiencies in managing and supporting the warehouse environment. Today, Discovery supports approximately 250 marketing, finance, and administration users in the Americas, Europe, and Asia-Pacific regions. They pull query results into their desktop report writers, load information into worksheets, or use the data to feed Executive Information Systems. User satisfaction has risen dramatically due to Discovery's vastly improved performance and remodelled business views.

4.2.3 Oracle

For large scale data mining, Oracle on the SP2 offers customers robust functionality and excellent performance. Data spread across multiple SP2 processor nodes is treated as a single image affording exceptionally fast access to very large databases. Oracle Parallel Query allows multiple users to submit complex queries at the same time. Individual complex queries can be broken down and processed across several processing nodes simultaneously. Execution time can be reduced from overnight to hours or minutes, enabling organizations to make better business decisions faster.

Oracle offers products that help customers create, administer and use their data warehouse. Oracle has a large suite of connectivity products that provide transparent access to many popular mainframe databases. Through the use of these products, customers can move data from legacy mainframe applications into the data warehouse on the SP2.

Some of the examples of their technology at work are as follows:

John Alden Insurance based in Miami, Fla., is using Oracle Parallel Query on the SP2 to mine healthcare information and they have seen orders-of-magnitude improvements in response time for typical business queries.

ShopKo Stores, a $2 billion, Wisconsin-based mass merchandise chain which operates 128 stores throughout the Midwest and Northeast, chose the SP2 to meet their current and projected needs for both data mining and mission-critical merchandising applications.

Pacific Bell and U.S. West, both telecommunications providers, have are using the Oracle Warehouse to improve their ability to track customers and identify new service needs. The solutions are based on the Oracle Warehouse, introduced in June, 1995.

4.2.4 Informix - Data Warehousing

As a major player in the field of data mining Informix have a number of success stories to quote some of which are:

Informix and Associated Grocers (retail example)

Associated Grocers, one of the leading cooperative grocery wholesalers in the northwest United States, with revenues of $1.2 billion, is replacing its traditional mainframe environment with a three-tiered client/server architecture based on Informix database technology. The new system's advanced applications have cut order-fulfilment times in half, reduced inventory carrying costs, and enabled the company to offer its 350 independent grocers greater selection at a lower cost. The details are -

In 1991, Associated Grocers embarked on a phased transition from its mainframe-based information system to open systems. The company initially used IBM RS/6000 hardware, and has since included Hewlett-Packard and NCR. In evaluating relational database management systems, Associated Grocers developed a checklist of requirements including education/training, scalability, technical support, solid customer references, and future product direction.

After selecting Informix as its company wide database standard, Associated Grocers then assembled the rest of its system architecture using a three tier model. On tier one, the "client" presentation layer, graphical user interfaces are developed using Microsoft(R) Windows(TM) and Visual Basic(TM). Tier two, based on Hewlett-Packard hardware, runs Micro Focus COBOL applications on top of the OEC Developer Package from Open Environment Corporation. This helps Associated Grocers develop DCE-compliant applications. The third layer, the data layer, is the INFORMIX-OnLine database.

Associated Grocers' pilot Informix-based application provides real-time inventory information for its deli warehouse. In the past, merchandise was received manually, and pertinent product information was later keyed into Associated Grocers' financial system. In contrast, the new system recognizes merchandise right at the receiving dock. Hand-held radio frequency devices allow merchandise to be immediately scanned into the Informix database. Product is assigned to a warehouse location and its expiration date is noted. When orders are filled, products with the earliest expiration dates are shipped first.

An extension to the deli warehouse system is a new post billing system, which is the ability to separate physical and financial inventory. Previously, merchandise could not be released for sale until the financial systems had been updated, which typically occurred over night. The new Informix-based system allows for immediate sale and distribution of recently received merchandise.

A third Informix-based application enables Associated Grocers to economically sell unique items-slow moving merchandise which is ordered monthly versus daily. Rather than incurring the high cost to warehouse these items, Associated Grocers created a direct link to outside speciality warehouses to supply the needed items on demand. Independent stores simply order the merchandise from Associated Grocers. The order goes into Associated Grocers' billing system then gets transmitted to the speciality warehouse, which immediately ships the merchandise to Associated Grocers. The speciality items are loaded onto Associated Grocers' delivery trucks and delivered along with the rest of an independent store's order.

Host Marriott (retail example)

Host Marriott has revenues of $1.1 billion and is a leading provider of food, beverage, and merchandise concession outlets located at airports, travel plazas, and toll roads throughout the United States. The company is streamlining its information systems to develop better cost controls and more effectively manage operations. To accomplish this, Host Marriott selected Informix database technology as its strategic IS foundation, which includes the development of a data warehouse using INFORMIX-OnLine Dynamic Server(TM) and INFORMIX-NewEra(TM). The new system will deliver valuable information throughout the organization, from field operators to corporate analysts. Details of the solution are:

The company split into two separate companies; Host Marriott and Marriott International, and as the company grew more diverse, so did its computer systems. Unique and more advanced information systems were coupled with inadequate ones. As a result, financial consolidation was primarily done manually, with sales information from each outlet keyed into individual computer systems every night. The information was then sent to Host Marriotts corporate office, where it was posted to the mainframe accounting system, which had no analysis capabilities. Any analysis had to be completed via a second system, proving to be a labor-intensive and slow process.

In an effort to streamline operations and improve system flexibility, Host Marriott is replacing its manually-intensive system with a series of new client/server-based applications using Informix development tools and relational database products running on an IBM RS/6000 and Hewlett-Packard Vectra PCs.

The first of Host Marriotts new Informix-based applications automates its sales and marketing functions. It was developed using INFORMIX-HyperScript(R) Tools--a visual programming environment used to create client/server applications for Windows(TM), UNIX(R), and Macintosh(R) systems, and INFORMIX-ESQL/C--a database application development tool which is used to embed SQL statements directly into C code. Instead of waiting for individual end-of-day reports, the system automatically polls sales data from the point-of-sale terminals at each outlet and consolidates it in the INFORMIX-SE relational database.

This information is used to consolidate and speed up end-of-day reporting, analyse sales, and monitor regulatory compliance. It has reduced a 10 hour process to less than one hour, and enables corporate and concession management to perform the kind of in-depth analysis that allows them to fine tune their product mix, reduce administrative overhead, and ultimately increase profit margins.

Focus is now on a data warehouse to leverage its existing businesses and generate new growth opportunities in the future. The data warehouse is a separate database that Host Marriott is designing explicitly for its data-intensive, decision-support applications. Building a data warehouse will allow them to optimize query times and eliminate impact on the company's production systems. The warehouse is being developed with INFORMIX-NewEra, an open, graphical, object-oriented development environment especially suited for creating enterprise wide client/server database applications.

The foundation of Host Marriotts data warehouse will be INFORMIX-OnLine Dynamic Server, which takes advantage of multiprocessing hardware to perform multiple database functions in parallel. The data warehouse will help the company determine which brands will succeed in which market. It will also help Host Marriott develop more proprietary brands, and deliver better products and services at lower cost.

By pooling sales data, market research, customer satisfaction ratings, etc., Host Marriott will be able to perform detailed analysis in order to eliminate unnecessary costs from operations, and fully leverage new business opportunities. Relying on Informix products and services is enabling Host Marriott to make the important shift from simple data processing to strategic business analysis.

4.2.5 Sybase

There is a lot of interest and activity in data warehousing, recent surveys show that more than 70 percent of Fortune 1000 companies have Data Warehousing projects budgeted or underway at an average cost of $3 million and a typical development time of 6 to 18 months (Meta Group Inc.).

Conventional warehousing applications today extract basic business data from operational systems, edit or transform it in some fashion to ensure its accuracy and clarity, and move it by means of transformation products, custom programming, or "sneaker net" to the newly deployed analytical database system. This extract, edit, load, query, extract, edit, load, query system might be acceptable if business life were very simple and relatively static but that is not the case, new data and data structures are added, changes are made to existing data, and even whole new databases are added.

Sybase Warehouse WORKS

Sybase Warehouse WORKS was designed around four key functions in data warehousing:

The Sybase Warehouse WORKS Alliance Program provides a complete, open, and integrated solution for organizations building and deploying data warehouse solutions. The program addresses the entire range of technology requirements for data warehouse development, including data transformation, data distribution, and interactive data access. The alliance partners have made commitments to adopt the Warehouse WORKS architecture and APIs, as well as to work closely with Sybase in marketing and sales programs.

4.2.6 SG Overview

The advances in data analysis realized through breakthroughs in data warehousing are now being extended by new solutions for data mining. Sophisticated tools for 3D visualization, coupled with data mining software developed by Silicon Graphics, make it possible to bring out patterns and trends in the data that may not have been realized using traditional SQL techniques. These "nuggets" of information can then be brought to the attention of the end user, yielding bottom-line results.

Using fly-through techniques, you can navigate your models on consumer purchasing and channel velocity to follow trends and observe patterns. In response to what you see, you can interact directly with the data, using visual computing to factor critical "what-if" scenarios into your models. By making it possible to go through many such iterations without resorting to over-burdened IS staff for analytical assistance, you can eliminate days - even months - from the review process.

4.2.7 IBM Overview

IBM provides a number of decision support tools to give users a powerful but easy-to-use interface to the data warehouse. IBM Information Warehouse Solutions offer the choice of decision support tools that best meet the needs of the end users in keeping with their commitment to provide open systems implementations.

IBM has announced, a Customer Partnership Program, to work with selected customers to gain experience and validate the applicability of the data mining technology. This offers customers the advantage of IBM's powerful new data mining technology to analyse their data looking for key patterns and associations. Visa and IBM announced an agreement on 30 May 1995 signalling their intention to work together. This will change the way in which Visa and its member banks exchange information worldwide. The proposed structure will facilitate the timely delivery of information and critical decision support tools directly to member financial institutions' desktops worldwide.

IBM Visualizer provides a powerful and comprehensive set of ready to use building blocks and development tools that can support a wide range of end-user requirements for query, report writing, data analysis, chart/graph making, business planning and multimedia database. As a workstation based product, Visualizer is object-oriented and that makes it easy to plug-in additional functions such as those mentioned. And, Visualizer can access databases such as Oracle and Sybase as well as the DB2 family.

There are a number of other decision support products available from IBM based on the platform, operating environment and database with which you need to work. For example, the IBM Application System (AS) provides a client/server architecture and the widest range of decision support functions available for the MVS and VM environments. AS has become the decision support server of choice in these environments because of its capability to access many different data sources. IBM Query Management Facility (QMF) provides query, reporting and graphics functions in the MVS, VM, and CICS environments. The Data Interpretation System (DIS) is an object-oriented set of tools that enable end users to access, analyse and present information with little technical assistance. It is a LAN-based client/server architecture that enables access to IBM and non-IBM relational databases as well as host applications in the MVS and VM environment. These and other products are available from IBM to provide the functions and capabilities needed for a variety of implementation alternatives.

[Next] [Previous] [Top]
All documents are the responsibility of, and copyright, © their authors and do not represent the views of The Parallel Computer Centre, nor of The Queen's University of Belfast.
Maintained by Alan Rea, email
Generated with CERN WebMaker